
CSE 369 Section 2
Modules and Gates

Administrivia
● Lab kit pickups: If you haven’t received a kit yet, stay tuned… Use

LabsLand for now.

● Lab 1&2: Report due next Wednesday (1/21) @ 2:30 pm,
demo by last OH on Friday (1/23), but expected during your assigned slot.

● Demo Slots: Demo slots have been assigned. Check Canvas!

● Lab 3: Report due 1/28, demo by last OH on 1/30 (a week after lab 1&2)

Boolean Algebra Review

Exercise 1

● a) Write out the Boolean Algebra expression for Q for the following
circuit.

● b) Simplify the expression for Q.

Exercise 1 (Solution)

● a) Write out the Boolean Algebra expression for Q for the following
circuit.

AB

B+C

BC

BC(B+C)

= AB + BC(B+C)

Exercise 1 (Solution)

● b) Simplify the expression for Q.

AB + BC(B+C)
AB + BC + BC
AB + BC
B(A + C)

Exercise 2

● Implement the Boolean expression B(A + C) with the fewest
number of a single universal gate. What does your solution look
like?
○ Universal gates are NAND and NOR

Exercise 2 (Solution)
NAND NOR NAND (alternative)

SystemVerilog Review

What is SystemVerilog?
● SystemVerilog is a Hardware Description Language (HDL).

○ We can describe digital circuits in code!

● Different from your normal programming language:
○ The language primitives are fundamentally different (e.g., wires and gates

instead of variables).
○ Hardware execution is concurrent (i.e., hardware never goes away and is

constantly computing), as opposed to sequential software execution (i.e., one
instruction at a time).

module AOI (F, A, B, C, D);
 output logic F;
 input logic A, B, C, D;
 assign F = ~((A & B) | (C & D));
endmodule

Modules
● The basic building block in SystemVerilog is the module, which represents

connected “black boxes” in our designs.
○ One definition, enclosed between the keywords module and endmodule.
○ As many instances as desired, each identified uniquely by name.

module AOI (F, A, B, C, D);
 output logic F;
 input logic A, B, C, D;
 ... // implementation
endmodule

module name port list (e.g., inputs and outputs)

AOI gate1 (.F(s0), .A(s1), .B(s2),
 .C(s3), .D(s4));

Definition: Instantiation:

Block:

instance name port connections (here, explicit)

gate1
(AOI)

A
B
C
D

F

s1
s2
s3
s4

s0

port
types

Logic Gates
● Basic gates can be specified using operators:

○ ~ is a 1-input NOT
○ & is a 2-input AND
○ | is a 2-input OR
○ All other gates can be built from combinations of these

● Other gate variants can be instantiated as built-in modules:
○ <gate> <instance_name> (output, input, …);
○ e.g., and g1 (F, A, B, C, D); // 4-input AND gate named g1

Combinational Logic in SystemVerilog
● assign – a single continuous assignment statement

○ The specified relationship will hold true for ALL time.
○ e.g., assign F = ~((A & B) | (C & D));
○ Can have as many assign statements as needed, but each must set a different

signal (i.e., no contention/conflicts).

Signals in SystemVerilog
● Basics:

○ “Variables” still need to be declared but correspond to either wires (wire) or
variable voltage sources (reg)

○ We will use logic for everything in this class (compiler resolves to wire/reg)
○ A bus (multi-bit variable) can be declared by adding a dimension to the

variable type (e.g., logic [2:0])

Signals in SystemVerilog
● Basics:

○ “Variables” still need to be declared but correspond to either wires (wire) or
variable voltage sources (reg)

○ We will use logic for everything in this class (compiler resolves to wire/reg)
○ A bus (multi-bit variable) can be declared by adding a dimension to the

variable type (e.g., logic [2:0])

● Signal manipulation:
○ bus[#] – Get and individual value from a bus
○ bus[#:#] – Get a group/slice of values from a bus
○ { sig, sig, … } (concatenation) – Create a new bus from an ordered

collection of existing signals
○ {N{sig}} (replication) – Create a new bus from N copies of a signal

Coding Exercises

Exercise 2
● Write a SystemVerilog module that implements the Seat Belt Light circuit

from Lecture 1:
○ SeatBeltLight (DriverBeltIn, PassengerBeltIn, Passenger)
○ Don’t mix-and-match – use either all built-in operators or all built-in gates

Exercise 2 (Solution)
● Module skeleton

module seatbelt_light_ops1(input logic DBI, PBI, P,
 output logic SBL);

 // Intermediate signals
 logic NOT_DBI, NOT_PBI, A;

 // Instantiating the built-in gates
 not gate1(NOT_DBI, DBI); // ~DBI
 not gate2(NOT_PBI, PBI); // ~PBI
 and gate3(A, P, NOT_PBI); // P & ~PBI
 or gate4(SBL, A, NOT_DBI); // A | NOT_DBI

endmodule // seatbelt_light

Exercise 2 (Solution)
● Version 1: using built-in operators, single assignment

module seatbelt_light_ops1(input logic DBI, PBI, P,
 output logic SBL);

 assign SBL = (~DBI) | (P & ~PBI);
 logic NOT_DBI, NOT_PBI, A;

 // Instantiating the built-in gates
 not gate1(NOT_DBI, DBI); // ~DBI
 not gate2(NOT_PBI, PBI); // ~PBI
 and gate3(A, P, NOT_PBI); // P & ~PBI
 or gate4(SBL, A, NOT_DBI); // A | NOT_DBI

endmodule // seatbelt_light_ops1

Exercise 2 (Solution)
● Version 2: using built-in operators, with intermediate signals

module seatbelt_light_ops2(input logic DBI, PBI, P,
 output logic SBL);

 // Intermediate signals
 logic NOT_DBI, NOT_PBI, A;

 // Instantiating the built-in gates
 not gate1(NOT_DBI, DBI); // ~DBI
 not gate2(NOT_PBI, PBI); // ~PBI
 and gate3(A, P, NOT_PBI); // P & ~PBI
 or gate4(SBL, A, NOT_DBI); // A | NOT_DBI

endmodule // seatbelt_light_ops2

NOT_DBI

NOT_PBI

A

Exercise 2 (Solution)
● Version 2: using built-in operators, with intermediate signals

module seatbelt_light_ops2(input logic DBI, PBI, P,
 output logic SBL);

 // Intermediate signals
 logic NOT_DBI, NOT_PBI, A;

 // Individual signal assignments
 assign NOT_DBI = ~DBI;
 assign NOT_PBI = ~PBI;
 assign A = P & NOT_PBI;
 assign SBL = A | NOT_DBI;

endmodule // seatbelt_light_ops2

NOT_DBI

NOT_PBI

A

Exercise 2 (Solution)
● Version 3: using built-in gates

module seatbelt_light_gate(input logic DBI, PBI, P,
 output logic SBL);

 // Intermediate signals
 logic NOT_DBI, NOT_PBI, A;

 // Individual signal assignments
 not gate1(NOT_DBI, DBI); // ~DBI
 not gate2(NOT_PBI, PBI); // ~PBI
 and gate3(A, P, NOT_PBI); // P & ~PBI
 or gate4(SBL, A, NOT_DBI); // A | NOT_DBI

endmodule // seatbelt_light_gate

NOT_DBI

NOT_PBI

A

Comparator
● Circuit that compares two numbers.

○ Inputs:
■ A: first number
■ B: second number
■ Inputs assumed signed

○ Outputs:
■ is_gt (>): A > B
■ is_eq (=): A == B
■ is_lt (>): A < B

Comparator
● Circuit that compares two numbers.

○ Inputs:
■ A: first number
■ B: second number
■ Inputs assumed signed

● For simplicity, we will take advantage of the subtraction/minus (-)
operator in Verilog.
○ is_lt: (Most significant bit of A-B) == 1 (negative)
○ is_eq: NOR all bits of A-B
○ is_gt: (MSB of A-B) == 0 AND ~is_eq
○ Note: these fail some edge cases but we will ignore those for now.

○ Outputs:
■ is_gt (>): A > B
■ is_eq (=): A == B
■ is_lt (>): A < B

Exercise 3
● Create a comparator module for 3-bit inputs.

Exercise 3 (Solution)
● Module skeleton

module comparator (input logic [2:0] A, B,
 output logic is_lt, is_gt, is_eq);

 // subtraction result (intermediate)
 logic [3:0] subtract;
 assign sub = A - B;

 assign is_eq = ~(sub[0] | sub[1] | sub[2] | sub[3]);
 assign is_lt = sub[3];
 assign is_gt = ~is_eq & ~is_lt;

endmodule // comparator

Exercise 3 (Solution)
● Compute intermediate result

module comparator (input logic [2:0] A, B,
 output logic is_lt, is_gt, is_eq);

 // subtraction result (intermediate)
 logic [2:0] sub;
 assign sub = A - B;

 assign is_eq = ~(sub[0] | sub[1] | sub[2] | sub[3]);
 assign is_lt = sub[3];
 assign is_gt = ~is_eq & ~is_lt;

endmodule // comparator

Exercise 3 (Solution)
● Compute outputs

module comparator (input logic [2:0] A, B,
 output logic is_lt, is_gt, is_eq);

 // subtraction result (intermediate)
 logic [2:0] sub;
 assign sub = A - B;

 assign is_eq = ~(sub[0] | sub[1] | sub[2]);
 assign is_lt = sub[2];
 assign is_gt = ~is_eq & ~is_lt;

endmodule // comparator

Block Diagrams
● Block diagrams are the basic design tool for digital logic.

○ The diagram itself is a module → inputs and outputs shown and connected.
○ Major components are represented by blocks (“black boxes”) with their

internals abstracted away → each block becomes its own module.
○ All ports for each block should be shown and labeled and connected to the

appropriate part(s) of the rest of the system → sets your port connections.
○ Wires and gates can be added/shown as needed.

Block Diagrams
● Block diagrams are the basic design tool for digital logic.

○ The diagram itself is a module → inputs and outputs shown and connected.
○ Major components are represented by blocks (“black boxes”) with their

internals abstracted away → each block becomes its own module.
○ All ports for each block should be shown and labeled and connected to the

appropriate part(s) of the rest of the system → sets your port connections.
○ Wires and gates can be added/shown as needed.

● From Wikipedia: The goal is to “[end] in block diagrams detailed enough
that each individual block can be easily implemented.”
○ For designs that involve multiple modules, should always create your block

diagram before coding anything!

https://en.wikipedia.org/wiki/Block_diagram

Block Diagram Examples

A
B
C
D

F

● MUX2 from AOI (Lecture 2) ● Ripple Carry Adder (Lecture 6)

Exercise 4
● Create a magic number guessing game using the comparator module:

○ Your system should have a “secret” hard-coded number (you choose!).
■ Reminder: a constant in SystemVerilog looks like 3'b001.

○ SW[2:0] is the user’s guess.
○ KEY[0] is pressed this when the user is ready to check their guess (check).

■ KEYs are active-low (i.e., 0 is “on”).
○ LEDs should indicate the outcome of the guess if check is asserted:

■ LEDR[0] should light up if the guess > the secret number (signed comparison).
■ LEDR[1] should light up if the guess == the secret number.
■ LEDR[2] should light up if the guess < the secret number (signed comparison).

1) Draw a block diagram of your proposed system
2) Implement the system in SystemVerilog

Exercise 4 (Solution) – Block Diagram

Exercise 4 (Solution) – Block Diagram

Exercise 4 (Solution) – Block Diagram

Exercise 4 (Solution) – Block Diagram

is_lt

is_eq

is_gt

~KEY[0]

Exercise 4 (Solution) – Code
module guessing_game (
 output logic [9:0] LEDR,
 input logic [3:0] KEY,
 input logic [9:0] SW
);

 logic is_lt, is_eq, is_gt;

 comparator number_comparator (
 .A(SW[3:0]),
 .B(4'b0111), // secret number
 .is_lt(is_lt),
 .is_eq(is_eq),
 .is_gt(is_gt)
);

 assign LEDR[0] = is_lt & ~KEY[0];
 assign LEDR[1] = is_eq & ~KEY[0];
 assign LEDR[2] = is_gt & ~KEY[0];

endmodule // guessing_game

● Module skeleton
○ Need DE1-SoC ports to use with

hardware.

Exercise 4 (Solution) – Code
module guessing_game (
 output logic [9:0] LEDR,
 input logic [3:0] KEY,
 input logic [9:0] SW
);

 logic is_lt, is_eq, is_gt;

 comparator number_comparator (
 .A(SW[3:0]),
 .B(4'b0111), // secret number
 .is_lt(is_lt),
 .is_eq(is_eq),
 .is_gt(is_gt)
);

 assign LEDR[0] = is_lt & ~KEY[0];
 assign LEDR[1] = is_eq & ~KEY[0];
 assign LEDR[2] = is_gt & ~KEY[0];

endmodule // guessing_game

● Define intermediate signals
○ Needed for module port

connections and output
computations.

Exercise 4 (Solution) – Code
module guessing_game (
 output logic [9:0] LEDR,
 input logic [3:0] KEY,
 input logic [9:0] SW
);

 logic is_lt, is_eq, is_gt;

 comparator number_comparator (
 .A(SW[2:0]),
 .B(3'b001), // secret number
 .is_lt(is_lt),
 .is_eq(is_eq),
 .is_gt(is_gt)
);

 assign LEDR[0] = is_lt & ~KEY[0];
 assign LEDR[1] = is_eq & ~KEY[0];
 assign LEDR[2] = is_gt & ~KEY[0];

endmodule // guessing_game

● Module instantiation
○ Hard-coding the secret number

directly into a port.
○ Ordering of A and B connections

matters (subtraction is not
commutative).

○ Ordering of ports when using explicit
connections doesn’t matter.

Exercise 4 (Solution) – Code
module guessing_game (
 output logic [9:0] LEDR,
 input logic [3:0] KEY,
 input logic [9:0] SW
);

 logic is_lt, is_eq, is_gt;

 comparator number_comparator (
 .A(SW[2:0]),
 .B(3'b001), // secret number
 .is_lt(is_lt),
 .is_eq(is_eq),
 .is_gt(is_gt)
);

 assign LEDR[0] = is_lt & ~KEY[0];
 assign LEDR[1] = is_eq & ~KEY[0];
 assign LEDR[2] = is_gt & ~KEY[0];

endmodule // guessing_game

● Compute outputs
○ Ordering of assignments doesn’t

matter because we’re describing
hardware – could have been above
comparator instantiation!

