CSE 369 Section 2

— Modules and Gates —

Administrivia

e Lab kit pickups: If you haven't received a kit yet, stay tuned... Use
LabsLand for now.

e Lab 1&2: Report due next Wednesday (1/21) @ 2:30 pm,
demo by last OH on Friday (1/23), but expected during your assigned slot.

e Demo Slots: Demo slots have been assigned. Check Canvas! ...

——

e Lab 3:Report due 1/28, demo by last OH on 1/30 (a week aisaseae=+&21""

Boolean Algebra Review

Exercise 1

e a) Write out the Boolean Algebra expression for Q for the following
circuit.
e b) Simplify the expression for Q.

o |)) o
_Z)J B

Exercise 1 (Solution)

e a) Write out the Boolean Algebra expression for Q for the following
circuit.

A———/ T\ AB

Byl DQ=AB+BC(B+C)
j) B+C
c |
) BC(B+C)

Exercise 1 (Solution)

e Db) Simplify the expression for Q.

AB + BC(B+C)
AB + BC + BC
AB + BC
B(A + C)

Exercise 2

e Implement the Boolean expression B(A + C) with the fewest
number of a single universal gate. What does your solution look
like?

o Universal gates are NAND and NOR

Exercise 2 (Solution)
NAND

NAND (alternative)

AR+ B C

A~
T ué%‘;))—
Z}-D.,JD L
HDa A A~
ASDOJD)_ — =

SystemVerilog Review

FPGA Engineer C++ Developer

® 3

Oh no ! Two of my
. Just send the threads tried to access
signal to both ports. this data at the same time

and my output is random !

What is SystemVerilog?

e SystemVerilogis a Hardware Description Language (HDL).

o We can describe digital circuits in code!

module AOI (F, A, B, C, D);
output logic F;
input logic A, B, C, D;

endmodule

assign F = ~((A & B) | (C & D));

A

ﬁ> °
F
G

D

e Different from your normal programming language:
o The language primitives are fundamentally different (e.g., wires and gates

instead of variables).

o Hardware execution is concurrent (i.e., hardware never goes away and is
constantly computing), as opposed to sequential software execution (i.e., one

instruction at a time).

Modules

e The basic building block in SystemVerilog is the module, which represents

connected “black boxes” in our designs.
o One definition, enclosed between the keywords module and endmodule.
o As many instances as desired, each identified uniquely by name.

Definition: Instantiation:
module name port list (e.g., inputs and outputs) instance name port connections (here, explicit)
}) X X X
module AOI (F, A, B, C, D); AOI gatel (.F(s0), .A(sl), .B(s2),
port _*>output logic F; .C(s3), .D(s4));

wpes I ynput logic A, B, C, D;
// implementation

Block:

endmodule sl —|A
s2 —»|B gatel
F—» s0
s3 —»|C (AOI)
s4 —»|D

Logic Gates

e Basic gates can be specified using operators:
o ~isal-input NOT
o &isa2-input AND
o | isa2-input OR
o All other gates can be built from combinations of these

e Other gate variants can be instantiated as built-in modules:
o <gate> <instance_name> (output, input, ..);
o eg,and gl (F, A, B, C, D); // 4-input AND gate named gl

Combinational Logic in SystemVerilog

e assign - asingle continuous assignment statement
o The specified relationship will hold true for ALL time.
o eg,assign F = ~((A &B) | (C&D));
o Can have as many assign statements as needed, but each must set a different
signal (i.e., no contention/conflicts).

Signals in SystemVerilog

e Basics:
o “Variables” still need to be declared but correspond to either wires (wire) or
variable voltage sources (reg)
o We will use logic for everything in this class (compiler resolves to wire/reg)
A bus (multi-bit variable) can be declared by adding a dimension to the
variable type (e.g., logic [2:0])

Signals in SystemVerilog

e Basics:
o “Variables” still need to be declared but correspond to either wires (wire) or
variable voltage sources (reg)
o We will use logic for everything in this class (compiler resolves to wire/reg)
A bus (multi-bit variable) can be declared by adding a dimension to the
variable type (e.g., logic [2:0])

e Signal manipulation:
o bus[#] - Get and individual value from a bus
o bus[#:#] - Get a group/slice of values from a bus
o { sig, sig, .. }(concatenation)- Create a new bus from an ordered
collection of existing signals
o {N{sig}} (replication) - Create a new bus from N copies of a signal

Coding Exercises

Exercise 2

e \Write a SystemVerilog module that implements the Seat Belt Light circuit

from Lecture 1:

o SeatBeltLight (DriverBeltin, PassengerBeltin, Passenger)
o Don't mix-and-match - use either all built-in operators or all built-in gates

DBI
PBI
P

SBL

Exercise 2 (Solution) ,'32: SBL

e Module skeleton

module seatbelt_light (input logic DBI, PBI, P,
output logic SBL);

endmodule // seatbelt_light

DBI

Exercise 2 (Solution) PBI
P

e Version 1: using built-in operators, single assignment

SBL

module seatbelt_light_opsl(input logic DBI, PBI, P,
output logic SBL);

assign SBL = (~DBI) | (P & ~PBI);

endmodule // seatbelt_light_opsl

NOT_DBI

DBI

Exercise 2 (Solution) PBI
P

e Version 2: using built-in operators, with intermediate signals

NOT_PBI

SBL

module seatbelt_light_ops2(input logic DBI, PBI, P,
output logic SBL);

// Intermediate signals
logic NOT_DBI, NOT_PBI, A;

endmodule // seatbelt_light_ops?2

NOT_DBI

DBI

Exercise 2 (Solution) PBI
P

e Version 2: using built-in operators, with intermediate signals

SBL

NOT_PBI

module seatbelt_light_ops2(input logic DBI, PBI, P,
output logic SBL);

// Intermediate signals
logic NOT_DBI, NOT_PBI, A;

// Individual signal assignments
assign NOT_DBI = ~DBI;

assign NOT_PBI ~PBI;

assign A P & NOT_PBI;
assign SBL A | NOT_DBI;

endmodule // seatbelt_light_ops?2

NOT_DBI

DBI
Exercise 2 (Solution) PBI

NOT_PBI

SBL

e Version 3: using built-in gates

module seatbelt_light_gate(input logic DBI, PBI, P,
output logic SBL);

// Intermediate signals
logic NOT_DBI, NOT_PBI, A;

// Individual signal assignments

not gatel(NOT_DBI, DBI); // ~DBI
not gate2(NOT_PBI, PBI); // ~PBI
and gate3(A, P, NOT_PBI); // P & ~PBI

or gate4(SBL, A, NOT_DBI); // A | NOT_DBI

endmodule // seatbelt_light_gate

Comparator
e Circuit that compares two numbers.
o Inputs: o QOutputs:
m A:first number m is_gt(>):
m B:second number m is_eq(=):
m Inputs assumed signed B is_lt(>):

A>B
A::
A<B

Comparator

e Circuit that compares two numbers.

o Inputs: o QOutputs:
m A:first number m is_gt(>): A>B
m B:second number m dis_eq(=): A==
m Inputs assumed signed m is_lt(>): A<B

e For simplicity, we will take advantage of the subtraction/minus (-)
operator in Verilog.
o 1is_1lt: (Most significant bit of A-B) == 1 (negative)
o ds_eq: NOR all bits of A-B
o ds_gt: (MSB of A-B)==0AND ~is_eq
o Note: these fail some edge cases but we will ignore those for now.

A

-
Exercise 3 : | =

e Create a comparator module for 3-bit inputs. B

Exercise 3 (Solution)

e Module skeleton

module comparator (input Tlogic [2:0] A, B,
output logic is_1lt, is_gt, is_eq);

endmodule // comparator

Exercise 3 (Solution)

e Compute intermediate result

module comparator (input Tlogic [2:0] A, B,
output logic is_1lt, is_gt, is_eq);

// subtraction result (intermediate)

logic [2:0] sub;
assign sub = A - B;

endmodule // comparator

Exercise 3 (Solution)

e Compute outputs

module comparator (input Tlogic [2:0] A, B,
output logic is_1lt, is_gt, is_eq);

// subtraction result (intermediate)
logic [2:0] sub;
assign sub = A - B;

assign 1is_eq
assign 1is_1t
assign 1is_gt

~(sub[0] | sub[1] | sub[2]);
sub[2];
~is_eq & ~is_1t;

endmodule // comparator

Block Diagrams

e Block diagrams are the basic design tool for digital logic.

©)

©)

The diagram itself is a module — inputs and outputs shown and connected.
Major components are represented by blocks (“black boxes”) with their
internals abstracted away — each block becomes its own module.

All ports for each block should be shown and labeled and connected to the
appropriate part(s) of the rest of the system — sets your port connections.
Wires and gates can be added/shown as needed.

Block Diagrams

e Block diagrams are the basic design tool for digital logic.
o The diagram itself is a module — inputs and outputs shown and connected.
o Major components are represented by blocks (“black boxes”) with their
internals abstracted away — each block becomes its own module.
o All ports for each block should be shown and labeled and connected to the
appropriate part(s) of the rest of the system — sets your port connections.
o Wires and gates can be added/shown as needed.

e From Wikipedia: The goal is to “[end] in block diagrams detailed enough
that each individual block can be easily implemented.”

o For designs that involve multiple modules, should always create your block
diagram before coding anything!

https://en.wikipedia.org/wiki/Block_diagram

Block Diagram Examples

e MUX2 from AOI (Lecture 2) e Ripple Carry Adder (Lecture 6)

SEL Cn GCof Fulladder | © C9 Fulladder | © Csf FullAdder |C= G5 Full Adder Co

Exercise 4

e C(Create a magic number guessing game using the comparator module:

o Your system should have a “secret” hard-coded number (you choose!).
m Reminder: a constant in SystemVerilog looks like 3'b001.
o SW[2:0] is the user's guess.

KEY[0] is pressed this when the user is ready to check their guess (check).
m KEYs are active-low (i.e., 0 is “on").

o LEDs should indicate the outcome of the guess if check is asserted:

m LEDR[0] should light up if the guess > the secret number (signed comparison).
m LEDR[1] should light up if the guess == the secret number.

m LEDR[2] should light up if the guess < the secret number (signed comparison).

1) Draw a block diagram of your proposed system
2) Implement the system in SystemVerilog

Exercise 4 (Solution) - Block Diagram

Exercise 4 (Solution) - Block Diagram

Secret
Number 1=

Exercise 4 (Solution) - Block Diagram

<evio) [@F=

swi2]|@:
sw1]|@:
sw[o]| @

Secret
Number

Exercise 4 (Solution) - Block Diagram

KEY[0] | @)

swi2]| @]
sw1]|@!
swio]| @]

e

2

= SW[2:0]
0 >

Secret
Number

~KEY[0]

is_gt

Exercise 4 (Solution) - Code

module guessing_game (
output logic [9:0] LEDR,
input logic [3:0] KEY,

e Module skeleton ; .
) input Tlogic [9:0] SW
o Need DE1-SoC ports to use with)
hardware.

endmodule // guessing_game

Exercise 4 (Solution) - Code

module guessing_game (
output logic [9:0] LEDR,
input logic [3:0] KEY,

e Define intermediate signals i i
input logic [9:0] SW
o Needed for module port) g
connections and output legte o Uk, t5 cq. G5 @

computations.

endmodule // guessing_game

Exercise 4 (Solution) - Code

module guessing_game (
output logic [9:0] LEDR,

e Module instantiation input logic [3:0] KEY,
) input Tlogic [9:0] SW
o Hard-coding the secret number)
directly into a port.
o Ordering of A and B connections
: : comparator number_comparator (
matters (subtraction is not A(SH[2:0])
commutative). .B(3'b001), // secret number
. . .. s_lt(is_1t),
o Ordering of ports when using explicit i eq(is_eq)

connections doesn't matter. cis_gt(is_gt)
)3

logic 1is_1lt, 1is_eq, is_gt;

endmodule // guessing_game

Exercise 4 (Solution) - Code

module guessing_game (
output logic [9:0] LEDR,

P Compute outputs input Tlogic [3:0] KEY,
] . input Tlogic [9:0] SW
o Ordering of assignments doesn'’t)
matter because we're describing
hardware - could have been above
comparator instantiation!

logic 1is_1lt, 1is_eq, is_gt;

comparator number_comparator (
LA(SW[2:0]),
.B(3'b001), // secret number
is_lt(is_1t),
.is_eq(is_eq),
is_gt(is_gt)

)3

assign LEDR[O]
assign LEDR[1]
assign LEDR[2]

is_1t & ~KEY[0];
is_eq & ~KEY[0];
is_gt & ~KEY[0];

endmodule // guessing_game

